Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Clin Genet ; 14: 297-303, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34113149

RESUMO

BACKGROUND: As pediatric tuberculosis (TB) globally is still reported challenging in diagnosis, to date, a lot of efforts have been established to eliminate the disease including proper treatment regimen using anti-TB drugs. However, antituberculosis drug-induced hepatotoxicity (ADIH) is known to interfere the success of the prescribed therapy. ADIH was found to be correlated with polymorphisms of NAT2 gene, that is responsible to transcript the NAT2 enzyme, a metabolizer of isoniazid (INH). The most common NAT2 gene polymorphisms in Asian population associated with ADIH are rs1041983, rs1799929, rs1799930 and rs1799931. The study aimed to investigate the 4 single nucleotide polymorphisms (SNPs) in pediatric TB that experienced ADIH. METHODS: We conducted a case-control study comparing 31 each of pediatric TB experience with and without ADIH. All pediatric TB was selected from 451 pediatric TB Registry of Respirology Division, Department of Child Health Faculty of Medicine Universitas Padjadjaran/Dr Hasan Sadikin Hospital during January 2016 to July 2018. Genomic DNA PCR and sequencing to identify polymorphisms of rs1041983, rs1799929, rs1799930 and rs1799931 were performed in both groups. Data analysis was performed using the Epi info Ver. 7 software. RESULTS: Thirty-one pediatric TB experiences with and without ADIH were enrolled in this study. SNP rs1041983 significantly affected the occurrence of ADIH (OR 2.39, CI 95% (1.15-4.96), p=0.019). The rs1799929, rs1799930 and rs1799931 did not significantly affect the occurrence of ADIH (p=0.133, p=0.150 and p=0.659, respectively). CONCLUSION: Polymorphism SNP rs1041983 had association with the occurrence of ADIH.

2.
Pharmacol Ther ; 226: 107864, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33894275

RESUMO

Cancer cells require increased levels of NADPH for increased nucleotide synthesis and for protection from ROS. Recent studies show that increased NADPH is generated in several ways. Activated AKT phosphorylates NAD kinase (NADK), increasing its activity. NADP formed, is rapidly converted to NADPH by glucose 6-phosphate dehydrogenase and malic enzymes, overexpressed in tumor cells with mutant p53. Calmodulin, overexpressed in some cancers, also increases NADK activity. Also, in IDH1/2 mutant cancer, NADPH serves as the cofactor to generate D-2 hydroxyglutarate, an oncometabolite. The requirement of cancer cells for elevated levels of NADPH provides an opportunity to target its synthesis for cancer treatment.


Assuntos
NADP , Neoplasias , Humanos , NADP/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo
3.
Biomolecules ; 10(3)2020 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-32111066

RESUMO

Actively proliferating cancer cells require sufficient amount of NADH and NADPH for biogenesis and to protect cells from the detrimental effect of reactive oxygen species. As both normal and cancer cells share the same NAD biosynthetic and metabolic pathways, selectively lowering levels of NAD(H) and NADPH would be a promising strategy for cancer treatment. Targeting nicotinamide phosphoribosyltransferase (NAMPT), a rate limiting enzyme of the NAD salvage pathway, affects the NAD and NADPH pool. Similarly, lowering NADPH by mutant isocitrate dehydrogenase 1/2 (IDH1/2) which produces D-2-hydroxyglutarate (D-2HG), an oncometabolite that downregulates nicotinate phosphoribosyltransferase (NAPRT) via hypermethylation on the promoter region, results in epigenetic regulation. NADPH is used to generate D-2HG, and is also needed to protect dihydrofolate reductase, the target for methotrexate, from degradation. NAD and NADPH pools in various cancer types are regulated by several metabolic enzymes, including methylenetetrahydrofolate dehydrogenase, serine hydroxymethyltransferase, and aldehyde dehydrogenase. Thus, targeting NAD and NADPH synthesis under special circumstances is a novel approach to treat some cancers. This article provides the rationale for targeting the key enzymes that maintain the NAD/NADPH pool, and reviews preclinical studies of targeting these enzymes in cancers.


Assuntos
Antineoplásicos/farmacologia , Vias Biossintéticas/efeitos dos fármacos , Descoberta de Drogas , NADP/metabolismo , NAD/metabolismo , Neoplasias/enzimologia , Animais , Inibidores Enzimáticos/farmacologia , Humanos , Terapia de Alvo Molecular , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Nicotinamida Fosforribosiltransferase/antagonistas & inibidores , Nicotinamida Fosforribosiltransferase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...